A Monte Carlo Approach to Food Density Corrections in Gamma Spectroscopy

Robert L. Metzger & Ken Van Riper

The Need for Food Density Corrections

- Self absorption of gammas from radionuclides in a sample can affect the efficiency curve used to quantify sample activity.
- The amount of correction can be trivial for isotopes with high energy photons (e.g. Cs-137) and favorable geometries (Marinelli Beakers).
- Alternately, isotopes with significant low energy photon emissions (e.g. Am-241), and unfavorable counting geometries, such as large buckets of the food product, can require significant corrections.

Correction Approaches - Analytical

- The most common technique is to simply order standards in the appropriate geometry at different densities over the expected range of densities seen and develop efficiency curves for each.
- The measured food product result is then corrected based on the interpolated value(s) of the efficiencies for the density of the food product under test.
- This approach is expensive and the standards cost about \$690 each, with a disposal cost of \$500 each every year.
- Cost is an important consideration in food testing as the margin is low for food products, and expensive test costs cannot be tolerated.

Measured Efficiency Curve

500 mL Marinelli Beaker Multiline Standard

Correction Methods – ISOCS/LABSOCS

- Canberra markets a robust tool to develop geometries and generate efficiency curves for them.
- Based on a series of MCNP runs plus other methodologies.
- The dead layer is measured at the factory and then transport runs are then made for this particular crystal.
- Powerful and robust.
- Expensive.

Correction Methods - ANGLE

- Ortec/Ametek markets this technology based on extended attenuation curves for particular geometries.
- Requires detailed input on the geometry under study and the crystal dimensions.
- Requires an efficiency curve generated by one standard in the selected geometry.
- Iterates to find the dead layer.
- Can make multiple types of corrections (TCS, etc).
- Powerful and robust.
- Expensive.

Correction Methods – This Work

- Uses MCNP as a primary tool.
- MCNP6 is free!
- Speeds development of the inp file by using a graphical geometry composer, Moritz.
- Requires a standard calibration at one density.
- Iterates the thickness of the dead layer to match the measured calibration curve.
- Runs are then generated over the range of densities expected. This requires only one number be changed in the inp file.
- Validate with spiked food samples.

MCNP Method Advantages

- Once the geometry is developed and verified, it will not change over the life of the crystal except to reflect changes in the thickness of the dead layer.
- For properly maintained crystals, the dead layer grows only slowly over the life of the crystal.
- Allows for a large number of density curves over the entire range of expected densities.
- Inexpensive.
- Can also be used for other materials (e.g. soil) and other corrections such as the peak to total values for True Coincidence Summing corrections.

MCNP Method Disadvantages

- Requires training to develop the inp file (or can be hired out).
- Must be verified by comparison of the MCNP generated efficiency triplets with those generated from a NIST traceable standard at one density. Most licensing authorities require one standard for each geometry.
- Iterative solution for the dead layer if the crystal has not already been characterized. Generally, starting with a .4 mm dead layer, it only requires three to four iterations to get the actual value.

MCNP Method - Example

- Start using an uncharacterized P type HPGe coaxial crystal 62 mm in diameter and 60 mm in length, with a 3 inch endcap. 40% relative efficiency.
- For a geometry, use a 500 mL Marinelli beaker.

3D Cutaway of Detector & Beaker Model

MCNP Model: Materials

Monte Carlo Source Points

MCNP Example

- The example chosen is a very favorable geometry for food measurements and the thickest dimension of sample that photons must penetrate is only a little over a centimeter.
- Consequently little, if any, correction would be expected for energetic photons.
- However, we will show that even this most favorable geometry requires density corrections for low energy isotopes.
- The model will be validated using food samples spiked with Am-241 and Cs-137.

MCNP Model – Dead Layer Iteration

- The dead layer for the crystal chosen was not known, so the model was run for various dead layer thicknesses until the MCNP model matched the measured efficiency curve.
- Initial curve indicates that the assumed dead layer of 1.0 mm was too large.
- Additional runs at 0.4 and 0.45 mm were run.
- The 0.45 mm thickness for the dead layer provides the best match of the measured curve.

Iterative MCNP Efficiency Curve @ 1g/cc

MCNP Efficiency Curves – 0.2 to 1.6 g/cc

Energy (keV)

Efficiency Variation with Energy

Time to Develop Model

- Completely new detector design: I to 2 days
 - Assuming full details from vendor
- Modify existing model to change dead layer dimensions : I to ¹/₂ day
- Model new beaker, including source definition & verification: 1/4 to 1/2 day
- Models can be parameterized to speed changing dimensions
 - %DLThick = 0.04 ; %OuterGeRadius = 3
 - Cylinder Defs: I CX %OuterGeRadius

2 CX %OuterGeRadius - %DLThick

Time to Determine Actual Dead Layer

- Prepare MCNP source definition for peaks in standard
- Decay to measurement time
- MCNP calculation of spectrum
 - 10⁸ histories (15 min w/ Marinelli beaker) sufficient
- Extract peaks & continuum, determine efficiency vs. energy
- Compare to measured efficiency curve, iterate as needed with different dead layer thickness
- For 10 peak standard & 6 iterations: I day

Run Times for 8 Densities & 10 Energies

- The total analysis time for the full set of efficiency curves over the range of expected densities: 1/2 day.
 - Includes preparing MCNP input files, MCNP runs (can do concurrently), extraction of results from output
- This makes the total time to develop and run the model starting with an uncharacterized crystal to be 2 to 4 days.
- Additional geometries for the characterized crystal can be done in 1 day.

Validation

- Existing food samples were spiked with standards of Am-241 and Cs-137. These isotopes represent the most difficult isotope for correction (Am-241) with a 60 keV gamma, and one of the most common high energy gamma emitters found in food products (Cs-137).
- The samples were counted on the characterized crystal and geometry (500 mL Marinelli) using the calibrated water efficiency curve (multiline standard).
- Results were corrected using the MCNP generated efficiency values for the observed food density and compared to the spiked values.

Validation - Rice Crackers

- An existing sample of rice crackers with a density of 0.245 g/cc was spiked with Cs-137 and Am-241 standards and was counted on the characterized crystal. Canberra Genie/Apex software was used.
- The values from the gamma analysis program were then corrected with the MCNP generated efficiency values at the lower density.
- The corrected results for Am-24 were easily within the counting error.
- As expected, the Cs-I37 values needed no correction across the full range of expected food densities for this geometry.

Validation – Rice Crackers

lsotope	Spike	Observed	Error (%)	Corrected	Error(%)
Am-241	0.12 pCi/g	0.15	25%	0.123	2.7%
Cs-137	0.12 pCi/g	0.114	5%	None	

Validation – Heavy Soy Sauce

- Soy sauce is one of the more common dense foods encountered at 1.18 g/cc.
- An existing sample of heavy soy sauce was spiked with Cs-137 and Am-241 standards and was counted in the Marinelli beaker geometry modeled.
- The results were then recorded and corrected using the MCNP generated efficiency values for the observed density.
- Again, the Cs-137 needed no correction.
- The error for the Am-241 result was essentially halved and was within counting error.

Validation- Heavy Soy Sauce

lsotope	Spike	Observed	Error (%)	Corrected	Error(%)
Am-241	0.12 pCi/g	0.107	10.8%	0.112	6.97%
Cs-137	0.12 pCi/g	0.113	5.8%	None	

Validation – Chaga Mushrooms

- Chaga mushrooms are a medicinal herb sold at health food stores. Density 1.054 g/cc
- The product is imported from Russia and contains about 0.541 pCi/g Cs-137. This is well below the DIL of 32 pCi/g.
- Mushrooms are a concentrator of Cesium isotopes.
- The sample was spiked with 0.457 pCi/g of Am-241 and was counted on the gamma spectrometer.
- The correction for the Am-241 was small due to the similar density to the water standard (reference), but did reduce the error.

Validation – Chaga Mushrooms

lsotope	Spike	Observed	Error (%)	Corrected	Error(%)
Am-241	0.457 pCi/g	0.425	7.5%	0.430	5.9%
Cs-137	None	0.41 pCi/g		None	

Validation: Syrup - Density 1.39 g/cc

lsotope	Spike	Observed	Error (%)	Corrected	Error(%)
Am-241	0.48 pCi/g	0.39	20%	0.43	12%
Cs-137	0.09 pCi/g	0.087	6.4%	0.09	2.2%

Validation: Ketchup – Density 1.106 g/cc

lsotope	Spike	Observed	Error (%)	Corrected	Error(%)
Am-241	0.61 pCi/g	0.50	17%	0.51	15%
Cs-137	0.111 pCi/g	0.111	6%	None	

Conclusion

- Monte Carlo derived food density correction values for a specific HPGe crystal and geometry, successfully corrected results to within counting error for all foods ranging from 0.24 to 1.6 g/cc.
- The model was developed quickly, and at low cost using an advanced visualization tool to speed the development of the MCNP input file.
- The unknown thickness of the dead layer was determined by comparison of the MCNP generated efficiency curve with an analytical curve from a water standard.

Conclusion

- The new method provides an inexpensive solution for food density corrections that is valid for the lifetime of the HPGe crystal.
- Requires a comparison of the MCNP generated efficiency curve with a measured standard at one density. This is normally required by most accreditation bodies.
- Can also be used to generate Peak to Total curves for True Coincidence Summing corrections.